4.2 FEM 仿真实例——偶极天线

4.2.1 问题描述

本例所要展示的器件如图 4-53 所示,通过查看远场图表,我们将介绍 Rainbow-FEM3D 模块的具体仿真流程,包括建模、求解、后处理等。本例中使 用的天线振臂是棱柱体,相较于圆柱来说,棱柱在网格剖分时产生的网格较 少,可以加快求解速度。

图 4-53 Dipole 模型

4.2.2 系统启动

4.2.2.1 从开始菜单启动

点击操作系统菜单 Start→Rainbow Simulation Technologes→Rainbow Studio,在弹出的产品选择对话框中选择产品模块,如图 4-54 所示,启动 Rainbow-FEM3D 模块 。

♣ 产品选择 - RainbowStudio 9.0	?	×
选择产品: Rainbow Studio企业版 Rainbow Studio专业版 Rainbow Studio标准版 Rainbow Viewer专业版	Ę	日请
 选择功能: 弹跳射线追踪(SBR) 电磁导航仿真系统(ENS) 有限元仿真(FEM3D) 边界元仿真(BEM3D) 三维版图设计(Layout3D) 三维准静态仿真(Q3D) 	Į	汉消
🗌 设置为缺省选择	췪	畒

图 4-54 启动 Rainbow-FEM3D 模块

4.2.2.2 创建文档与设计

如图 4-55 所示选择菜单文件→新建工程→Studio 工程与 FEM(Modal)模型 来创建新的文档,其中包含一个缺省的 FEM 的设计。

لله از جذب					
×17	建工程		₩₽	Studio工程	l
_			Ø	Studio工程与FEM(Modal)模型	
	Ŧ	C++1+0	٩	Studio工程与FEM(Terminal)模型	
	/1	0011.0	٩	Studio工程与FEM(Eigen)模型	
	开样例		٩	Studio工程与HFSS文档	
			2	EMViewer工程	
			<u>6</u>	FEMAnnular.rbs	,
	出		7	BEMA1mond.rbs	

图 4-55 创建 FEM 文档与设计

在弹出的对话框中修改模型的名称为Dipole,如图4-56所示。

<mark>न</mark> ्न Rainbo	?	\times
输入模型新的名词	称:	
Dipole		
OK	Car	ice1

图4-56 修改设计名称

点击菜单 File→Save 或者 Ctrl+S 来保存文档,将文档保存为

FEMDipole.rbs 文件。保存后的工程树如图 4-57 所示。

图 4-57 保存文档

4.2.3 创建几何模型

用户可以通过**几何**菜单下的各个选项来从零开始创建各种三维几何模型, 包括坐标系,创建点、线、面和体结构。

4.2.3.1 设置模型视图

如图4-58所示点击菜单设计→长度单位,在图4-59所示的模型长度单位修 改对话框中修改长度单位为**毫米(mm)**。点击确认关闭窗口并继续。

图4-58 修改长度单位

🔒 模型长度单位 - RainbowStudio 9.0	?	\times
单位: mm 王 料	镀:	7 🛟
取消		确认

图4-59 设置模型单位

4.2.3.2 设置变量

点击**工程→管理变量**,打开 **Dipole** 设计的变量设置对话框,如图 4-60 所示,单击**增加**按钮,依次添加变量,添加完成后点击**应用**,再点击**确认**即可完成变量的添加操作。

🎦 工程变量库 -	R	ainbowStudio 9.0			🎦 变量属	影性 - RainbowStudio	9.0	?	\times
定制 内置		常量			名称:	V3			
		名称	表达式	值		0			
	1	freq	2	2	表达式:				
	2	1ambda	c0/fr	149. 8…					
					描述:				
增加							取消	确认	
删除									\geq
编辑									
						应用	取消 确	i认	

图 4-60 设置模型变量

变量1

变量 2

变量名: freq

变量名: lambda 表达式: c0/freq/1e6

表达式: 2

4.2.3.3 创建正棱柱几何对象

点击菜单**几何→正棱柱体**创建棱柱体如图 4-61 所示,用户可以在模型视图 窗口中按照图 4-62 和图 4-63 用鼠标创建抛物面。

文件	主页	工程	设计	- 見何	物理	分析	Ť ¥	吉果显示	视图		窗口 · 寿	助				
	7,	🦄 相対常	常规	NP.	+		Щ.	f(x) †		\diamond		٥		•		E1
125 B	27	♬"相对≍	略		Z	\sim	Ê	\sim	0	\bigcirc	f[x,y]	1		. ك		U;
导入 导	± ▼	🚰 相对放	庭转	相对(UI)	\cap	n	6	解析	0	9	解析		+	0	椭球体	空气盒
工程			8	× 🗉 🛞	坐标系	ł							圆柱	体	252	
🖻 😐 FEI	Dipo	le*			ή						2025		正棱	柱体		2626

图 4-61 创建正棱柱体

图 4-62 用鼠标拉出正棱柱体底面

图 4-63 用鼠标拉出正棱柱

体高度

选择对象的创建命令 **CreateRegularPolyhedron**,在如图 4-64 所示的属性 窗口中输入如下属性参数。

🐻 属性 - R ? 🛛 🗙
命令 RegularPolyhedron
坐标系 Global 🔹
位置
X 0
У О
Z 2
坐标轴 7.
高度 lambda/2
起始点
X 0
У О
Z 2.5
面数目 8
命令
10% 7年計
*1次1日 1月以

图 4-64 修改正棱柱体对象几何尺寸

X: 0	起始点
Y: 0	X: 0
Z: 2	Y: 0
坐标轴:Z	Z: 2.5
高度: lambda/2	面数:8

按照上述方法创建第二个正棱柱体。双击 **RegularPolyhedron2** 目录下的创 建命令 **CreateRegularPolyhedron**,修改第二个棱柱体的参数,如图 4-65 所 示。

🐻 属性 - R.	? ×
命令 Reg 坐标系 (A1 位置 X 0 Y 0 Z -2	gularPolyhedron nba1
坐标轴 7. 高度 -1a 起始点 - X 0 Y 0	ambda/2
工 2.5 面数目 8 命令 取消	确认

图 4-65 修改第二个棱柱体的参数

X: 0	起始点
Y: 0	X: 0
Z: -2	Y: 0
坐标轴:Z	Z: 2.5
高度: -lambda/2	面数:8

4.2.3.4 创建长方形

将平面修改为 YZ 平面,如图 4-66 所示。

图 4-66 将平面修改为 YZ 平面

此时的操作都会在 YZ 平面进行。点击菜单几何→长方形创建矩面几何对 象如图 4-67 所示,在图 4-68 所示的位置绘制长方形的起点,图 4-69 的位置绘 制长方形的终点。

图 4-68 绘制长方形的起点

图 4-69 绘制长方形的终点

创建好的几何模型如图 4-70 所示。

图 4-70 创建好的几何模型

4.2.3.5 创建长方体

Z X

点击菜单**几何→长方体**创建长方体如图 4-71 所示,在模型视图窗口中进行 如图 4-72 和图 4-73 所示的操作,用鼠标操作创建长方体。

文件	主页	工程 设计	+ 几何	物理	分析	f 结果显示	视图	图窗口	帮助		
5	5→	3 相对常规	N.	+		↓ f(x) †		f[xy]		•	
	Ξ.	3 ¹ 相对平移	K-	Z	\sim	é · 🗸	0		1	\bigtriangleup	•
导入 長	≩出 ▼	🖉 相对旋转	相对(UI) ▼		n	◎ 解析	0	♀ 解析		0	椭球体

图 4-72 用鼠标拉出长方体底面

图 4-73 用鼠

标拉出长方体高度

双击创建命令 CreateBox,可以在属性修改对话框中修改长方体的属性, 根据图 4-74 所示修改长方体的参数。

🐻 属性 - R ? 🛛 🗙
命令 CreateBox
坐标系 G1nba1 ▼ 位置
X -1ambda/4-2.5
Y -1ambda/4-2.5 Z -3*1ambda/4-2
长度 1ambda/2+5
宽度 1ambda/2+5
高度 3*1ambda/2+8
命令
取消 确认

图 4-74 修改长方体参数

X: -lambda/4-2.5

Y: -lambda/4-2.5

长度: lambda/2+5 宽度: lambda/2+5

Z: -3*lambda/4-2

双击长方体对象 Box1,修改透明度为 0.7,如图 4-75 所示。

图 4-75 修改长方体透明度

修改完成后的几何模型如图 4-76 所示。

Z Y X

图 4-76 修改完成后的几何模型

4.2.4 仿真模型设置

接下来需要对几何模型设置各种相关的物理特性,包括模型的边界条件, 网格参数等。

4.2.4.1 设置边界条件

创建几何模型后,用户可以为几何模型设置边界条件。在工程管理树中, Rainbow 系列软件把这些新增的边界条件添加到设计的边界条件目录下。选择 创建的长方体 Box1 对象,单击添加边界条件→理想辐射边界,如图 4-77 所示。

4.2.4.2 添加端口激励

创建几何模型后,用户可以为几何模型设置各种端口激励方式和参数。在 工程管理树中,Rainbow系列软件把这些新增的端口激励添加到工程树的激励 端口目录下。

选择创建的长方形对象 **Rectangle1**,为其添加集总端口,在其右键菜单选 择**添加端口激励→集总端口**,如图 4-78 所示。

图 4-78 添加集总端口

在弹出的集总端口设置对话框点击确认按钮完成设置,如图 4-79 所示。

图 4-79 确认集总端口设置

4.2.4.3 修改几何材料

双击正棱柱体对象 **RegularPolyhedron1、RegularPolyhedron2**,在几何对 话框中修改材料为 **pec**,如图 4-80 所示。

图 4-80 修改正棱柱体为 pec 材料

4.2.4.4 添加网格控制参数

几何模型创建好后,用户需要为几何模型和模型中的某些关键结构设置各 种全局和局部网格剖分控制参数。在工程管理树中,Rainbow系列软件把这些 新增的结果显示添加到设计的网格部分目录下。

选择菜单网格部分→初始网格设置如图 4-81 所示的初始网格控制参数。

工程 ■×	👷 🧟 🔒 初始网格设置 - RainbowS	? ×
 ■ FEIDipole* ● \$\frac{1}{1}\$ 变量库 ● \$\frac{1}{1}\$ 变量库 ● \$\frac{1}{2}\$ 0 Dipole* 	 □ し、 □ 边长控制: □ 网格大小模式: Norma1 最小: □ 局大: □ 量长率 1.5 □ 精确投影控制 高级选项: □ 几何边网格加密: □ 0.00 ○ 相邻边网格加密 □ 合并精度范围内的网格节点和边 ☑ 面网格剖分优化 ○ 取消 	· · · · · · · · · · · · · · · · · · ·

图 4-81 设置全局网格参数

网格大小模式: Normal

其余保持默认设置。

4.2.5 仿真求解

4.2.5.1 设置仿真求解器

下一步,用户需要设置为模型分析设置求解器所需要的仿真频率及其选项,以及可能的频率扫描范围。在工程管理树中,Rainbow系列软件把这些新增的求解器参数和频率扫描范围添加到设计的**求解方案**目录下。选择菜单**分析** →添加求解方案,如图 4-82 所示。并在如图 4-83 所示的求解器设置对话框中 修改求解器参数。

图 4-2 添加求解方案操作

🎦 求解器设置 - Ra	inbowStudio 9.0	? ×	► 求解器设置 - RainbowStudio 9.0 ?	X
■常规 自适应 □常规			常规 自适应 迭代参数:	
名称: FEM1		🔽 启用	每步最大细化单元数目比例: 0.3	
频率: freq		GHz	Maximum Number of Passes: 20	
┌ 选项 ────			● 最大能量差值(DeltaS): 0.015	
数据精度:	Single Precision	•	◎ 启用收敛矩阵: 设置幅度/相位	
基函数介数:	First Order	•		
□□ 启用迭代求解	r			
相对剩余:	0.001			
最大迭代步幅:	0.001			
缺省	取消	确认	缺省 取消 确认	

图 4-83 设置求解器

频率: freq

每步最大细化单元数目比例: 0.3

Maximum Number of Passes: 20

最大能量差值(Deltas): 0.015

4.2.5.2 添加远场

选择工程管理树的**散射远场**节点,选择右击菜单中的**球面**,并在如图 4-84 所示的控制对话框中输入如下控制参数来添加模型的远场观察球。

工程 ^P ×	🎦 远场散射	I球面设置 - Rainbo	wStudi	io 9.0	?	\times
 PEIDipole* PEIDipole* POP 交量库 POP Dipole* POP Dipole* POP Dipole* POP Dipole* POP Dipole POP Dipole* POP Dipole POP Dipole<th>散射远场: 名称: FarSi 位置: </th><th>phereField1 1nba1 Sample by Step 0 360 1 1 ;: 0</th><th>deg deg deg</th><th>Theta 取样方法: 起点: 终点: 步幅:</th><th>Samole by Step 0 180 1</th><th>L deg deg deg mm</th>	散射远场: 名称: FarSi 位置:	phereField1 1nba1 Sample by Step 0 360 1 1 ;: 0	deg deg deg	Theta 取样方法: 起点: 终点: 步幅:	Samole by Step 0 180 1	L deg deg deg mm

图 4-84 远场观察球设置

Phi		Theta
起点:	0 deg	起点: 0 deg
终点:	360 deg	终点: 180 deg
步幅:	1 deg	步幅: 1 deg

4.2.5.3 添加扫频方案

在**求解方案**目录下打开刚添加的 **FEM1**,在其右键菜单中选择**扫频方案→ 添加扫频方案**,如图 4-85 所示,按照图 4-86 所示设置扫频方案。

= 🔟 不解刀	茶				
	8	删除	De1		
- 〇 散射流	Ø	属性	Shift+P		
- () HAJE	\checkmark	标签	Shift+T		
■ 🔮 场仿真	\otimes	启用/禁用			
	₿	剖分网格			
	S	求解			
	~	清除数据			
		查看数据			
		Solution Data			
	A=	仿真日志			
		扫频方案		1	添加扫频方案
	_	任务		6	全删

图 4-85 添加扫频方案

🎦 仿真扫描	频率方案 - Rainbo	?	× ×
常规 名称: FreqS	weep 1		☑ 启用
- 扫描	Interpolating		选项
─ 频率: ────	Lincor hu numbor 💌	1	利举
起掉刀云:	0.1	GHz	204
终止: 数月:	2	GHz	
缺省	取消		确认

图 4-86 设置扫频方案

扫描类型: Interpolating

起始: 0.1 GHz

终止: 2 GHz

数目:101

4.2.5.4 求解

完成上述任务后,用户可以选择菜单**分析→验证设计**来如图 4-87 所示验证 模型设置是否完整,点击验证设计后会出现如图 4-88 所示的验证有效性界面。

图 4-88 验证仿真模型有效性

下一步,选择菜单**分析→求解设计**启动仿真求解器分析模型如图 4-89 所示。用户可以利用任务显示面板来查看求解过程,包括进度和其它日志信息,如图 4-90 所示。

安 田 同轴谐振器-Eigen1 Ⅰ

图 4-90 查看仿真任务进度信息

4.2.6 结果显示

4.2.6.1 S参数图表显示

仿真结束后,系统可以创建各种形式的视图,包括线图,曲面和极坐标显示,天线辐射图等。在工程管理树中,Rainbow系列软件把这些新增的视图显示添加到设计的结果显示目录下。选择菜单结果显示→SYZ 参数图表→2 维矩形线图,如图 4-91 所示,并在如图 4-92 所示的控制对话框中输入如下控制参数来添加远场结果。

图 4-91 生成远场曲线

Rainbow图表生成器 - 1D Rect Chart - RainbowStudio 9.0 ?						
数据源: 参数扫描: Nu11 ▼ 方案: A11 ▼ [1] FEM1:AdaptPass:Moda1 [3] FEM1:FinalPass:Moda1 [7] FEM1:FregSweep1:Moda1		果: 別: [Z-Parameter WWR	项: Y Z Q L C		函数: PhaseRad PhaseRadCont Real dB10 dB10Normalize dB20Normalize	* 8 *
	_数 X:	据过滤: Frequency A1:	1			
		Quantity ∇		Va1:	ue	
	1	In	A11			
	2	Out	A11			
				新增图表	新增图元	关闭

图 4-92 设置图表参数

方案: [7]	类别: SYZ-
Parameter	
项: S	函数: dB20
In: All	Out: All

图 4-93 S 参数结果显示

4.2.6.2 三维极坐标图显示

选择工程管理树的结果显示节点,选择右击菜单远场图表→3 维极坐标曲 面图,如图 4-94 所示,并在如图 4-95 所示的控制对话框中输入如下控制参数 来添加模型的远场散射方向图结果

图 4-94 添加三维极坐标图

Hainbow图表生成器 - 3D Polar Surface - RainbowStudio 9.0 ???????????????????????????????????							? ×
─数据源: — 参数扫描:	Nu11		吉果: ————————————————————————————————————	项:	ntal	函数:	
□元乘: 激励: 传感源: [5] FEM1:F	A11 A11 A11 A11 ImalPass:P1:FarSphereField1		PField Polarization Ratio Gain Realized Gain Antenna Parameters	Gain P Gain T Gain X Gain Y Gain Z Gain L	ni neta i	Real dB10 dB10Normaliza dB20Normaliza	e 🗸
		γ γ γ	处据过滤: : RadiationTr ▼ A1 : RadiationPr ▼ A1	1			
			Quantity $\overline{\}$ 1 Frequency	A11	Va	alue	
			2 PortModel	A11			
📃 求和数排	舌源中的数据 						
					新增图表	新增图元	关闭

图 4-95 三维极坐标图设置

方案: [5]

项: Gain Total

三维极坐标图结果如图 4-96 所示。

类别: Gain

函数: dB20

5 图 4-96 三维极坐标结果显示图

图例