4.4 天线仿真实例 —— 八木天线

4.4.4 仿真模型设置

4.4.4.1 设置材料

创建几何模型后,用户可以为几何模型设置各种材料。如图 4-181 所示在 几何树中用鼠标分别选择所创建的引向器 1、引向器 2、引向器 3、引向器 4、 **有源振子**和反射器几何对象,在属性窗口设置其材料为 pec。

图 4-181 指定几何体为 pec 材料

4.4.4.2 设置边界条件

如图 4-182 所示在几何树中用鼠标选择所创建的空气盒几何对象,选择菜 单**添加边界条件→理想辐射边界**来指定空气盒几何对象为理想辐射边界。

图 4-182 指定空气盒几何对象为理想辐射边界

在工程管理树中选择新添加的理想辐射边界,几何模型视图窗口会以高亮的形式显示,如图 4-183 所示。

图 4-183 空气盒几何对象的理想辐射边界设置

4.4.4.3 设置激励

选择**端口激励矩面**几何对象,选择菜单**添加端口激励→集总端口**设置如图 4-184 所示,并在如图 4-185 所示的对话框中设置集总端口的名称。

		The second se	1.00	
● ② 坐标系 ● 几何 ● ③ 实体 ● ③ 文体 ● ③ 空气盒 ● ③ CreateAin ● ③ Unassignment ■ □ Unassignment ■ □ Unassignment ■ ○ CreateRea ● ○ CreateRea	8 2 2	指定材料 構式几何 视图 ・ 编辑 ・ 貼附密像 清除图像 几何 ・ 网格链接 ・		
		添hni力更多件	83	
		添加端口激励	(TH)	波端口
		·沃加网友均当 ▶		
		19/04/91012.00	H	集总端口
	_	添加网格显示 ▶		圆形波端口
	\$	漆加近场显示 ▶		共轴波端口
				矩形波端口
			a	Floquet端口
			_₩	平面波
图 4-18	84	添加集总端		
🎦 集总激励端口 - Ra	ain	bowStudio 9.0	?	\times
名称: P1				
📙 消除飲入				

🧾 消除嵌入		
	取消	确认

图 4-185 设置集总端口

创建好的集总端口会保存在工程树的**激励端口**目录下,点击+号打开激励端 口目录,双击集总端口 P1 下的 1 如图 4-186 所示,设置激励积分线,如图 4-187 所示修改阻抗参数。

图 4-186 打开集总端口

🎦 激励	积分线 - RainbowSt	?	×
名称: 1 _ 参考阻	亢:		
阻抗:	195		0
积分线;			
起始:	0, 0, -0. 125		mm
终点:	0, 0, 0. 125		mm
纬	辑 重置 ▼	交换	
缺省	取消	确i	٨

图 4-187 修改阻抗参数

4.4.4.4 设置网格控制参数

几何模型创建好后,用户需要为几何模型和模型中的某些关键结构设置各 种全局和局部网格剖分控制参数。按住 Ctrl 键依次选中所有模型,鼠标右击选 择**物理→边**如图 4-188 所示,在如图 4-189 所示的几何边线网格长度控制对话 框中修改参数。

图 4-188 设置几何边线网格长度

🎦 几何边线网格长度控 ?		
名称: LengthOnEdge1		
_ 边长 0.02*1amb		mm
缺省取消	通确	il

图 4-189 设置网格剖分控制参数

边长: 0.02*lamb

4.4.5 仿真求解

4.4.5.1 设置仿真求解器

下一步,用户需要设置为模型分析设置求解器所需要的仿真频率及其选项,以及可能的频率扫描范围。选择菜单**分析→添加求解方案**添加如图 4-190 所示的仿真求解器。

🎦 求解器设置 - Ra	inbowStudio 9.0	?	\times
常规自适应			
中观 名称: FEM1 频率: fred		GHz	启用
	Single Precision		T
基函数介数: 同 启用迭代求解	First Order		_
相对剩余; 最大迭代步幅;	0.001		
缺省	取消	<u>م</u>	畒

图 4-190 添加 FEM 仿真求解器

频率: freq

在工程树的**求解方案**中选择新加的**求解方案 1**,单击右击菜单**扫频方案→** 添加扫频方案如图 4-191 所示,并按照图 4-192 所示设置仿真求解扫频方案。

🎦 仿真扫描	频率方案 - Rainbo	? ×
- 常规 ──── 	ween 1	◎ 白田
- 扫描	weepi	
扫描类型:	Interpolating 💌	选项
─频率: ──		
选择方法:	Linear by number 💌	列举
起始:	12.5	GHz
终止:	32.5	GHz
数目:	401]
缺省	取消	确认

图 4-192 设置扫频方案

扫描类型: Interpolating

起始: 12.5GHz

终止: 32.5GHz

数目: 401

4.4.5.2 求解

完成上述任务后,用户可以选择菜单**分析→验证设计**,如图 4-193 所示验 证模型设置是否完整。

🎦 验证模型 - R ? 🛛 🗙
 Geometry Material Boundary and Excitation Solution Pattern Mesh Terminal
关闭

图 4-193 验证仿真模型有效性

下一步,选择菜单**分析→求解设计**启动仿真求解器分析模型。用户可以利

用任务显示面板来查看求解过程,包括进度和其它日志信息,如图 4-194 所

示。

×	求解	
6	32%	Cance1
	宋解	
	setup system35 (s) done. > Peak memory usage versus available memory: 3275 / 1533 MB >Peak memory usage, available memory and max core size(MB): 3275, 1533, 1226. factorize (symmetric)done45 (sec)	Î
p(r		· ·
Ĥ	FERYagiAntenna-YagiAntenna 🖸	

图 4-194 查看仿真任务进度信息

4.4.6 结果显示

仿真分析结束后,用户可以查看模型仿真分析的各个结果,包括仿真分析 所用的网格剖分,模型几何结构上的近场和远场显示等。

4.4.6.1 设置在线计算选项

为避免频繁调用计算模块来实时显示仿真结果,系统会关闭仿真后场自动 计算功能。选择菜单**主页→选项**来打开选项配置页面,并如图 4-194 所示打开 仿真后场自动计算功能。

图 4-195 打开仿真后场自动计算功能

4.4.6.2 网格显示

在模型视图或者几何树中用鼠标选择创建的**引向器 1、引向器 2、引向器** 3、引向器 4、有源振子和反射器几何对象,选择右击菜单添加网格显示→网 格,并在如图 4-196 所示的控制对话框中输入如下控制参数来添加几何的网格 剖分情况。

图 4-196 添加几何网格剖分结果显示

设置完成后,所选几何对象的网格剖分情况经放大后如图 4-197 所示。

图 4-197 显示几何的网格剖分情况

4.4.6.3 近场结果显示

在模型视图或者几何树中用鼠标选择所创建的**引向器 1、引向器 2、引向器** 3、引向器 4、有源振子和反射器几何对象,选择菜单物理**>添加近场显示>E** 电场模,如图 4-198 所示,并在如图 4-199 所示的控制对话框中输入如下控制 参数来添加几何的近场电场分布情况。

图 4-198 添加 E 电场模

🎦 近场	显示 - RainbowStudio	9.0	?	×	
名称:	Mag1 交量 ————————————————————————————————————				
方案: 频率:	FEM1:FinalPass 32.5			•	
相位:	0				
缺省 取消 确认					

图 4-199 添加几何的近场电场分布

设置完成后,所选几何对象的近场电场分布情况在模型视图中如图 4-200

图 4-200 几何的近场电流分布

4.4.6.4 S参数结果显示

仿真结束后,系统查看模型的不同频率的 SYZ 参数。在工程管理树中, Rainbow 系列软件把这些新增的结果显示添加到设计的结果显示目录下。选择 工程管理树的结果显示节点,选择右击菜单 SYZ 参数图表→2 维矩形线图,如 图 4-201 所示,并在如图 4-202 所示的控制对话框中输入如下控制参数来添加 模型的 SYZ 参数分布结果。

- 🚮 结果显示					
		SYZ参数图表	•	12	2维矩形线图
		远场图表	•	\odot	2维极坐标线图
		近场图表	•		
	6	删除所有图表			

图 4-201 创建 2 维矩形线框

Rainbow图表生成器 - 1D Rect Chart - RainbowStudio 9.0				
数据源: 参数扫描: Nıı11 ▼ 方案: A11 ▼ [1] FEM1:AdaptPass:Modal [3] FEM1:FinalPass:Modal [6] FEM1:FreqSweep1:Modal	-结果: 类别: 项: 函 SY2-Parameter S VSWR Z Q L C	数: haseRad haseRadCont eal B10 B10Normalize B20Normalize 下		
	数据过滤: X: Frequency I All Quantity Value			
	2 Out All			
	新增图表	增图元 关闭		

图 4-202 产生 SYZ 参数曲线

方案: [6]	类别: SYZ-
Parameter	
项: S	函数:
dB20	
In: All	Out :

All

设置完成后,单击**新增图表**,所生产的 SYZ 参数曲线分布情况在结果图表 视图中如图 4-203 所示。

图 4-203 SYZ 参数曲线

4.4.6.5 远场方向图结果显示

选择工程管理树的**散射远场**节点,选择右击菜单中的**球面**,并在如图 4-204 所示的控制对话框中输入如下控制参数来添加模型的远场观察球。

工程 🔮 ×								
FETYagiAntenna*	RainbowStudio 9.0 ? 2							
● 🚯 材料库	┌散射远场:							
🖻 🤯 YagiAntenna*	名称: FarSphereField1							
□ 豆 变量库	└ 位置:							
□- 】 边界条件	 坐标系: G1nba1							
🔤 🌈 Radiation1	Phi Theta							
⊡────> 激励端口	取样方法: Sample by Step I 取样方法: Sample by Step I							
	起点: 0 deg 起点: 0 de	g						
□ 🛞 网格剖分	终点: 360 deg 终点: 180 de	g						
LengthOnE…	步幅: 5 deg 步幅: 1 de	g						
□ 12 求解方案	3维图形示意:							
- □ 扫描优化	长度: 1000 mm							
── 🔘 散射远场								
▣──❤️ 场仿真结果 ▣─ 👩 结果显示								

图 4-204 远场观察球设置

设置完远场观察球后,可以如图 4-205 所示选择新增远场观察球的右击菜

单计算来启动求解器后场计算。

🔄 🔘 散射远场		-14	•
			10
	8	删除	De1
 ■ 100 结果显示 	Ø	属性	Shift+P
_	\checkmark	标签	Shift+T
	1	远场	
	S:	计算	
	[****]	导出远场数据	

图 4-205 后场计算远场观察球

选择工程管理树的结果显示节点,选择右击菜单**远场图表→3 维极坐标曲** 面图,如图 4-206 所示,并在如图 4-207 所示的控制对话框中输入如下控制参 数来添加模型的远场散射方向图结果。

- 高 结	用。日、日	<u>.</u>			
		SYZ参数图表	•		
		远场图表	•	12	2维矩形线图
		近场图表	×	\odot	2维极坐标线图
	6	删除所有图表			3维矩形等势图
	⊞	创建格式图表		۲	3维矩形曲面图
	٦	删除所有格式图表			3维极坐标曲面图

图 4-206 创建 3 维极坐标曲面图

🔒 Rainbow图表生成器 - 3D Polar Surface - RainbowStudio 9.0

┌数据源: ─		= \$	吉果:		
参数扫描:	Nu11	• 3	失别∶	项:	函数:
方案:	A11	-	Axial Ratio R-Field	Far-Field E-Total Far-Field E-Phi	PhaseRadCont
激励:	A11	-	Polarization Ratio	Far-Field E-Theta	■ dB10 dB10Nerme1ige
传感源:	A11	·	Realized Gain	Far-Field E-Y	dB20
<u>18] FEM1:F</u>	inalPass:P1:FarSphereField:		Antenna Parameters	Far-Field E-Z Ram-Field E-LHCP	✓ dB2UNormalize
			效据过滤:		
		Σ	: RadiationTr 💌 A1		
		7	: RadiationPr 💌 All		
			Quantity $ abla$		Value
			1 Frequency	A11	
			2 PortModel	A11	
🔲 求和数排	居源中的数据				
				新增图表	新增图元 关闭

图 4-207 远场散射方向图设置

数据源: [8]

类别: E-Field

?

Х

项: Far-Field E-Total 函数: dB10 X: RaditationTheta Y: RaditionPhi Frequency: All PortModel: All

图 3-208 远场散射方向图

系统也可以把所生成的远场方向图添加到几何模型视图中去。选择工程管 理树上的散射远场节点,右击菜单**添加远场显示→远场**,如图 4-209 所示,并 在如图 4-210 所示的控制对话框中修改如下控制参数来添加模型的散射远场结 果。

	★ BA31A 散射近	+1/)	添加i	远场显示		•	1	远场	
1 结果显示			属性		Shift+	P			
		\checkmark	标签		Shift+	·T			
		6	全删						
		图	4-209	添加远均	汤散射方向]图			
i	🖣 几何近	场显示	示 - Rai	inbowStu	dio 9.0	?		×	
Ŧ	名称: GP1								
Г	- 参数: —								
	图表:	Po1	arSurfa	ace1					
	坐标系:	G1 c	nba1					•	
	透明度:	0.3	0					÷	
	缩放因子:	1							
	缺省				取消		确认		

图 4-210 修改散射远场方向图

添加好后的远场散射方向图在几何模型视图中的显示如图 4-211 所示。

设置完成后,所生成的天线远场方向图在结果图表视图中如图 4-208 所

示。

