第六章 SBR 仿真实例

内容提要:

1、设置模型视图。

2、设置变量与材料。

3、创建几何模型。

4、设置仿真模型。

5、求解仿真模型。

6、显示结果。

目标:熟悉 Rainbow-SBR 模块的建模环境,掌握 Rainbow-SBR 模块的建模及 仿真流程,能够在 Rainbow-SBR 模块进行仿真模型的结果分析。

Rainbow-SBR 模块是基于弹跳射线追踪算法,结合高频物理和几何光学,考虑几何表面反射、透射、绕射和爬波等电磁效应;应用射线追踪多次反射,准确分析超电大尺寸目标的电磁特征。Rainbow-SBR 模块可以应用于分析复杂环境下的电磁传播特性、平台天线的布局优化设计、天线之间的互相耦合干扰、电磁暗室布局等。

Rainbow Studio 软件的 SBR 模块考虑了光线追踪表面的多层介质、金属、阻抗、吸波材料等各类边界条件;支持复杂地形环境下的电磁效应分析、准确预测电磁信号的传播路径损耗等;支持电磁散射特性,包括单站和双站雷达散射截面、SAR 成像;支持用户自定义射线处理显示;支持多种理想天线模型、外部天线辐射模型和平面波等多种激励。Rainbow-SBR 模块的设计流程图如图 6-1 所示。

481

图 6-1 Rainbow-SBR 模块设计流程图

本章将介绍 Rainbow-SBR 模块的建模和仿真过程。

- 6.1 SBR 仿真实例——Cavity
- 6.1.1 问题描述

本例所要分析的器件如图 6-2 所示,通过查看远场图表,我们将介绍 Rainbow-SBR 模块的具体仿真流程,包括建模、求解、后处理等。

图 6-2 Cavity 模型

6.1.1.1 从开始菜单启动

点击操作系统菜单 **Start→Rainbow Simulation Technologes→Rainbow Studio**, 在弹出的产品选择对话框中选择产品模块,如图 6-3 所示,启动 Rainbow-SBR 模 块。

╊ 产品选择 - RainbowStudio 9.0	?	\times
选择产品。 Rainbow Studio企业版 Rainbow Studio专业版 Rainbow Viewer专业版	ŧ	请
选择功能:	甲	2消

图 6-3 启动 Rainbow-SBR 模块

6.1.1.2 创建文档与设计

如图 6-4 所示选择菜单文件→新建工程→Studio 工程与 SBR 模型 来创建新的 文档,其中包含一个缺省的 SBR 的设计。

图 6-4 创建 SBR 文档与设计

在弹出的对话框中默认新建模型的名称为Cavity,如图6-5所示。

🎦 Rainbo	?	\times			
输入模型新的名称	尔:				
Cavity					
OK	Can	cel			

图 6-5 修改设计名称

点击菜单 File→Save 或者 Ctrl+S 来保存文档,将文档保存为 SBRCavity.rbs 文件。保存后的工程树如图 6-6 所示。

图 6-6 保存文档

6.1.2 创建文档与设计

用户可以通过**几何**菜单下的各个选项来从零开始创建各种三维几何模型,包括坐标系,创建点、线、面和体结构。

6.1.2.1 设置模型视图

如图6-7所示点击菜单设计→长度单位,在图6-8所示的模型长度单位修改对话 框中修改长度单位为**米(m)**。点击确认关闭窗口并继续。

器 模型长度单位 - RainbowStudio 9.0	×
单位: m 承援:	7 🛟
取消 ;	确认

图 6-8 设置模型单位

6.1.2.2 设置变量

点击**工程→管理变量**,打开 Cavity 设计的变量设置对话框,如图 6-9 所示, 单击增加按钮,依次添加变量,添加完成后点击应用,再点击确认即可完成变量 的添加操作。

🎦 工程变量库 -	R	ainbowStudio 9.0			🎦 变量属	『性 -	- RainbowStu	dio 9.0		?	\times
定制 内置		常量			名称:	V3					
		名称	表达式	值		0					
	1	freq	0. 299…	0.3	表达式:						
	2	1 amb da	c0/fr	0. 999…							
					描述:						
增加]	取消	确	il 🛛
删除											
编辑											
							应用	取消	٦ T	确认	

图 6-9 设置模型变量

变量1		变量 2	
变量名:	freq	变量名:	lambda
表达式:	0.3	表达式:	c0/freq/1e9

6.1.2.3 设置材料

在工程树中选择**材料库**,在其右键菜单中选择**管理材料**,如图 6-10 所示,打 开如图 6-11 所示的工程材料库。

🍰 🚧	&	添加材料
8 91	6	全删
		管理材料

图 6-10 打开材料管理库

╊ 选择/编辑工程库材料 - RainbowStudio 9.0							X	
→材料库 全选 □ 系统材料库 删除 ☑ 工程材料库 插入 □ 用户材料库 材料列表。 □								
Material Name		▼ 值:	*					
名称	位置	Usage	相对介电常数	个质损耗因子	相对磁导率	磁损耗因子	导电	
r	Project	N	1.00059	0	1	0	0	
iC	Project	N	1	0	1	0	1e+30	
cuum	Project	Y	1	0	1	0	0	
			m				•	
Project 显示/编辑 增加 克隆 删除								
	z 全选 删除 插入 J表: Naterial Name 名称 r c cuum ct c,/编辑	全选 副除 插入 JITE 本語 「Material Name 名称 位置 r 名称 位置 r Project c cuum Project ct 元/编辑 増加	差 全选 副除 插入 描入 北aterial Name 又 值: 名称 位置 Usage r Project N c Project N cuum Project Y ct 元/编辑 増加 克隆	全选	產 全选 删除 插入 插入 基本 基本 名称 位置 Usage 相对介电常数 介质损耗因子 r Project N 1.00059 0 c Project N 1.00059 0 c Project N 1 0 cuum Project Y 1 0	全选	全选	

图 6-11 工程材料管理编辑界面

单击增加按钮,为工程添加新的材料,具体设置如图 6-12 所示。

8	■ 材料 - RainbowStudio 9.0 ー □ ×						
属	性:						
名	称: materiall						
	属性	类型		值			
1	Relative Permit…	Simple	2.2				
2	Relative Permea…	Simple	1				
3	Bulk Conductivity	Simple	0				
4	Dielectric Loss…	Simple	0.003				
5	Magnetic LossTa…	Simple	0				
厚	度: 0.00					*	
粗	糙度: 0.00					*	
	缺省			取消	确认		

图 6-12 添加新材料

名称: material1

Relative Permittivity: 2.2

Magnetic LossTangent: 0

Bulk Conductivity: 0

Relative Permeability: 1 Dielectric LossTangent: 0.003

6.1.3 创建几何模型

6.1.3.1 创建圆柱体几何对象

点击菜单**几何→圆柱体**创建圆柱体如图 6-13 所示,用户可以在模型视图窗口 中按照图 6-14 和图 6-15 所示操作用鼠标创建圆柱体。

图 6-13 创建圆柱体

图 6-14 用鼠标拉出圆柱体半径

图 6-15 用鼠标拉出圆柱体高度

选择对象的创建命令 CreateCylinder, 在如图 6-16 所示的属性窗口中输入如下属性参数。

● ② 坐标系 ● 几何	🐻 属性 - R ? 🛛 🗙
e- for 实体 e- & vacuum e- @ Cylinder1 - ☐ CreateCylinder	命令 CreateCylinder 坐标系 Glnbal

图 6-16 修改圆柱体对象几何尺寸

X: 0	坐标轴: Z
Y: 0	半径: lambda
Z: 0	高度: 2*lambda

6.1.4 仿真模型设置

接下来需要对几何模型设置各种相关的物理特性,包括模型的边界条件,网格 参数等。

6.1.4.1 设置边界条件

创建几何模型后,用户可以为几何模型设置边界条件。在工程管理树中, Rainbow 系列软件把这些新增的边界条件添加到设计的边界条件目录下。将选择模 式修改为面(Face)选模式,如图 6-17 所示。

	🕜 Object
	🔲 Face
	🕤 Edge
	🔏 Vertex
	🔗 Element
藓:	👅 Face 🛛 🔁

图 6-17 修改选择模式为面选模式

此时选择的对象为某一平面,选择创建的圆柱体的顶面,在其右键菜单中选择 添加边界条件→孔径窗口,如图 6-18 所示。

图 6-18 添加孔径窗口

选择圆柱体的圆柱面,在其右键菜单中选择**添加边界条件→多层阻抗**,如图 6-19 所示。

图 6-19 添加多层阻抗操作

在阻抗边界设置对话框中点击**插入**按钮,双击某一参数可以对其进行修改, 多层阻抗的设置如图 6-20 所示。

F		阻抗边界 - Rainbo	?	×				
名	名称: ImpedanceLayered1							
	🥅 理想无限地平面							
表	面	粗糙度: 0			m / sq			
Г	叠	昙结构: —————						
		双面 📃 表面单元権	莫型		单位 m			
		厚度/类型	材料	插				
	1	0.2	material1	册修	}			
	2	Infinite	vacuum	清陽	<u></u>			
				上利	多			
	4		•	下利	3			
		缺省	取消	The second se	认			

图 6-20 设置阻抗

厚度/类型: 0.2

材料: material1

选择圆柱体的底面,在其右键菜单中选择**添加边界条件→理想电导体**,如图 6-21 所示。

图 6-21 添加理想电导体边界

6.1.4.2 添加端口激励

创建几何模型后,用户可以为几何模型设置各种端口激励方式和参数。在工程管理树中,Rainbow系列软件把这些新增的端口激励添加到工程树的激励端口目录下。

单击菜单**物理→平面波**如图 6-22 所示,设置如图 6-23 所示的 E_theta 平面波 激励。

文件	主页	工程	设计	几何	物理	分标	析 结果显示	示 视图	窗口	帮助	
理想电导	 体 集	<mark>正</mark> 总RLC	 ➡ 有限 ① 孔径 ◆ 常规 	导体 ₩ 窗口 阻抗	多层阻	抗	 	▲ 平面波	シン 辐射波	 ▲ 场域强度 ⇒ 切換激励源显示 	()) 管理

图 6-22 添加平面波

┣ 入射平面波激励 - RainbowStudio 9.0 ? ×										
名称: E_theta										
常规 - Wave Ph	窗函数 ni			-Wave Tł	neta					
方法:	Linear by St. 💌			方法:	Lir	ear by Str				
起点:	0	deg		起点:	0		deg			
终点:	0	deg	:	终点:	90		deg			
步进:	0	deg		步进:	1		deg			
- 位置:				- Eo Vec	tor					
X: 0			m	Phi		0	V/m			
Y: 0			m			· · · · · · · · · · · · · · · · · · ·				
Z: 2*1a	ambda		m	Theta:		1	V/m			
长度: 96 m										
缺省	缺省 取消 确认									

图 6-23 添加 E_theta 平面波激励

Wave Theta	位置				
起点: 0 deg	X: 0				
终点: 90 deg	Y: 0				
步进: 1 deg	Z: 2*lambda				

6.1.4.3 添加网格控制参数

几何模型创建好后,用户需要为几何模型和模型中的某些关键结构设置各种全 局和局部网格剖分控制参数。在工程管理树中,Rainbow系列软件把这些新增的结 果显示添加到设计的网格部分目录下。

选择圆柱体的顶面,在其右键菜单中选择**添加网格控制→面**,如图 6-24 所示。

图 6-24 修改圆柱顶面的网格参数

按照如图 6-25 所示设置面网格参数。

🎦 几何面网格长度控制	?	\times
名称: LengthOnFace1 ┌边长		
0. 025*1ambda		m
缺省取消	7	确认

图 6-25 设置面网格控制参数

边长: 0.025*lambda

Z X

选择菜单网格部分→初始网格设置如图 6-26 所示的初始网格控制参数。

工程 e ×	■ 🤮 坐板	🎦 初始网格设置	t - RainbowS	? ×
🖃 🛄 SBRCavity*	E/ [14]	┌ 边长控制: ───		
□		网格大小模式:	Norma1	•
🖣 🛃 材料库		最小:	0	m
- 🔪 Cavity*		最大:	0	m
1 空量库		增长率	1.5	
□ \ 边界条件		🔲 精确投影控制		
■ ◇ 激励端ロ		高级选项: ——		
		几何边网格加密: 	0.00	* *
	始网格 🛌 📗	┃ ┃ 相邻边网格加		
	面近似	■ 合升精度氾围	内的网格卫点和辺 化	
	HI	缺省	取消	确认
	HI	缺省	取消	确认

图 6-26 设置全局初始网格剖分控制参数

网格大小模式: Normal

其余保持默认设置。

6.1.5 仿真求解

6.1.5.1 设置仿真求解器

下一步,用户需要设置为模型分析设置求解器所需要的仿真频率及其选项,以 及可能的频率扫描范围。在工程管理树中,Rainbow系列软件把这些新增的求解器 参数和频率扫描范围添加到设计的**求解方案**目录下。选择菜单分析**→添加求解方** 案,如图 6-27 所示。并在如图 6-28 所示的求解器设置对话框中修改求解器参数。

图 6-27 添加求解方案操作

掃 求解器设置 - RainbowStu	?	\times
▽求解器		
名称: SBR1		启用
频率: freq	GH	Iz
选项:		
最大弹跳次数: 6		÷
光线密度(按波长): 6		
 腔体仿真模式 SAR仿真模式 		
缺省 取消	面	畒

图 6-28 设置求解器参数

频率: freq

最大弹跳次数:6

光线密度(按波长): 6

6.1.5.2 求解

完成上述任务后,用户可以选择菜单**分析→验证设计**来如图 6-29 所示验证模型设置是否完整,点击验证设计后会出现如图 6-30 所示的验证有效性界面。

图 6-29 验证设计操作

🎦 验证模型 - R ? 🛛 🗙
 ♀ Geometry ♥ Material ♥ Boundary and Excitation ♥ Solution ♥ Pattern ♥ Mesh ♥ Terminal
关闭

图 6-30 验证仿真模型有效性

下一步,选择菜单**分析→求解设计**启动仿真求解器分析模型如图 6-31 所示。 用户可以利用任务显示面板来查看求解过程,包括进度和其它日志信息,如图 6-32 所示。

	文件	主页 工程	设计	几何 物理	2 分析	结果显示 视图	窗口	帮助		
	S			A =			₿	S	id	
	验证设计	求解设计	查看数据	设计日志	清除数据	添加求解方案	剖分网格	求解	查看数据	
				图 6-31	l求解设	计操作				
× 求解 Ø 求解					32%					
网格节点数 601 输出logic文件 完成剖分近场观察几 输出solve文件 启动求解器	5 边数 18042 单元数 0 (s) 何网格 0 (s) 0 (s)	ý 12028)								
SBRCavity-Cavity										

图 6-32 查看仿真任务进度信息

6.1.6 结果显示

仿真分析结束后,用户可以查看模型仿真分析的各个结果,包括仿真分析所用 的网格剖分、本征值、电流分布等。

6.1.6.1 网格显示

用户可以选择某个或多个几何结构,查看他们在仿真分析时所构建的网格剖分。 用户可以选择菜单**物理→网格**来为选择的几何结构添加网格剖分显示。在工程管理 树中,Rainbow 系列软件把这些新增的结果显示添加到设计的**场仿真结果**目录下。 在模型视图或者几何树中选择 Cavity 几何对象,选择菜单**物理→网格**,如图 6-33 所示,并在如图 6-34 所示的控制对话框中输入如下控制参数来添加几何的网格剖分情况。

 ● 金 坐标系 ○ 几何 ● 金 yacuum ● 金 yacuum ● 金 Yacuum ● 金 CreateCylinder 	2 几何 → 网格链接 → 模型 → 測量 → 創建模块 指定模块
	禄加边界条件 → 添加端日激励 → 添加证场 → 添加证场 → 添加证场 → 添加近场显示 → 添加近场显示 → 添加运场显示 →

图 6-33 添加网格

🔒 网格显示 - RainbowS	?	\times
名称: MeshView1		
「方案:		
方案: SBR1		-
缺省取消]	确认

点击**确认**完成设置后,所选 Cavity 几何对象的网格剖分情况在模型视图中如图 6-35 所示。

图 6-35 显示几何的网格剖分情况

ZY

图 6-34 添加几何网格剖分结果显示

6.1.6.2 远场图表显示

仿真结束后,系统可以创建各种形式的视图,包括线图、曲面和极坐标显示, 天线辐射图等。在工程管理树中,Rainbow系列软件把这些新增的视图显示添加到 设计的结果显示目录下。选择菜单结果显示→远场图表→2 维矩形线图,如图 6-36 所示,并在如图 6-37 所示的控制对话框中输入如下控制参数来添加远场 RCS 结果。

- [2] 结果		远场图表	K	2维矩形线图
		近场图表 🔹 🕨	Ø	2维极坐标线图
	6	删除所有图表		3维矩形等势图
	⊞	创建格式图表	۲	3维矩形曲面图
	6	删除所有格式图表	5	3维极坐标曲面图

图 6-36 生成远场 RCS 曲线

<mark>음</mark> Rainbow图表生成器 - 1D Rect Chart - RainbowStudio 9.0 ?									
数据源: 参数扫描: 方案: 激励: 传感源: [4] SBR1:F	Null All All All InalPass:E_theta:Monostatic	- 结果: 类別. 项: Axial Ratio E-Field Polarization Ratio Monostatic RCS Total Monostatic RCS Theta Monostatic RCS X Complex Monostatic RCS Y Monostatic RCS Z				函数: PhaseRad PhaseRadCont Real dB10 dB10Normalize cheec dB20Normalize	-		
- 求和数技	居源中的数据	数: X: 1 2	据过滤: RadiationTh All Quantity 不 RadiationPhi Frequency	1 A11 A11	Va1	18			
					新增图表	新增图元	关闭		

图 6-37 设置图表参数

数据源: [4]

类别: Monostatic RCS

项: Monostatic RCS Theta

函数: dB20

远场结果如图 6-38 所示。

图 6-38 二维矩阵线图结果显示

6.2 本章小结

本章介绍了 Rainbow-SBR 模块,通过 Cavity 介绍了 Rainbow-SBR 模块的建模 及仿真过程。在建模过程中介绍了多层阻抗的设置,建模完成后对几何模型进行了 网格剖分以及 RCS 参数图表的查看。

思考与讨论

1、SBR 模块的建模及仿真过程。

2、如何设置多层阻抗。